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Figure 1. In the 3DSSR task, a user provides an input query Q specifying a set of axis-aligned bounding boxes (bottom left). The query
consists of an object of interest (couch in purple box), and a set of context objects (side table and chair in blue boxes). Then, for each 3D
scene T in the dataset we identify a collection of objects (i.e., a subscene) that best correspond to the objects in Q. Our notion of subscene
similarity relies on intrinsic and extrinsic properties of the 3D object within each box. For intrinsic similarity, we encode the object within
and compare the codes from Q and T . For extrinsic similarity, we measure the overlap between subscene arrangements. The output in
3DSSR is a ranked list of retrieved subscenes (right column).

Abstract

We present the task of 3D subscene retrieval (3DSSR). In
this task a user specifies a query object and a set of context
objects in a 3D scene. Then, a system retrieves and ranks
subscenes from a database of 3D scenes that best corre-
spond to the configuration defined by the query. This for-
mulation generalizes prior work on context-based 3D ob-
ject retrieval and 3D scene retrieval. To tackle this task we
present POINTCROP: a self-supervised point cloud encoder
training scheme that enables retrieval of geometrically sim-
ilar subscenes without relying on object category supervi-
sion. We evaluate POINTCROP against alternative meth-
ods and baselines through a suite of evaluation metrics that
measure the degree of subscene correspondence. Our ex-
periments show that POINTCROP training outperforms su-
pervised and prior self-supervised training paradigms by
4.33% and 9.11% in mAP respectively.

1. Introduction

Recent advances in 3D reconstruction and 3D content
creation methods have led to an explosion in the volume
of 3D scene data. As the scale of both synthetic and re-
constructed 3D scene datasets continues to grow, methods
to search and retrieve scenes and their constituent objects
become increasingly important. The ability to specify fine-
grained constraints on parts of scenes that are to be retrieved
is particularly useful in a variety of practical scenarios. For
example, if we can retrieve subscenes similar to a square
table with two chairs on each side, we can edit the 3D ob-
jects in those subscenes for various downstream tasks. In
this scenario, one could replace the 3D objects in the re-
trieved subscenes with geometrically simpler objects, insert
additional objects, or delete a subset of objects. This ca-
pability can also help to compress a 3D scene database by
deduplicating subscenes across many scenes.

Prior work has tackled 3D scene retrieval (i.e. retriev-
ing an entire 3D scene [7]) and object retrieval from 3D



scenes (i.e. retrieving a specific object in a 3D scene [6]).
This early work in both directions has established versions
of these two tasks as separate tasks. However, we argue
that the ‘contextually meaningful object set’ retrieval prob-
lem as articulated above is a more practically useful task.
Firstly, as the square table with two chairs example illus-
trates, it is natural and intuitive to specify constraints on a
set of objects. Secondly, with increasing 3D scene size and
complexity, it is important to localize and select a relevant
subset of objects rather than retrieve an entire scene.

We formalize this problem statement as the 3D subscene
retrieval task (3DSSR). The input is a 3D query subscene
consisting of a query object in the context of a 3D scene
(e.g square table with one chair on each side). The output
is a ranked list of 3D subscenes retrieved from the database,
along with a correspondence map between the 3D objects
in the retrieved and query subscenes. This task generalizes
single object retrieval and entire scene retrieval and affords
a spectrum of options in between. This is a challenging task
for a number of reasons. Unlike scene graph-based image
retrieval [11], we must reason with 3D scene representa-
tions that involve 3D spatial relations between objects. We
cannot rely on common viewpoint biases that exist in im-
age data (e.g., that objects of interest are usually centered in
the frame, and are less frequently occluded). Moreover, we
cannot assume that we have access to large datasets of 3D
scenes with annotated object categories.

We avoid supervision through object category labels
since we hypothesize their discrete nature is not ideal for
subscene retrieval where fine-grained geometric and spatial
similarity is important. For example, chairs exhibit high
variability in terms of size and geometry. Therefore, we
tackle the 3DSSR task without explicit object category su-
pervision. To validate our hypothesis, we train the same
point cloud encoder architecture using supervised, prior
self-supervised paradigms, and our approach. Furthermore,
we compare our model against methods that directly use
oracle object categories for subscene retrieval. Our exper-
iments show that our non-contrastive self-supervised en-
coder (POINTCROP) retrieves geometrically more similar
3D subscenes compared to baselines. We outperform su-
pervised and prior self-supervised paradigms by 4.33% and
9.11% in mean average precision (mAP) of geometric and
spatial arrangement similarity between subscenes.

2. Related Work
Scene graph-based image retrieval. Our problem state-
ment is related to work on image retrieval based on scene
graph representations. The work of Johnson et al. [11] is an
early example, employing a conditional random field model
to retrieve images that best represent a query scene graph.
The use of scene graphs to represent images has been pop-
ularized by the VisualGenome dataset [12]. More recent

work leveraging such data has focused on image generation
based on input scene graphs [10]. Our work deals with 3D
scenes, thus our 3D subscene retrieval framework does not
rely on viewpoint biases in images.
3D scene graph-based retrieval and dataset organiza-
tion. The work of Fisher et al. [6] on context-based retrieval
of 3D objects is an early example of retrieving 3D objects
based on pairwise spatial relations in the source scene and
a target scene. Followup work used a graph kernel formula-
tion for 3D scene retrieval as well as retrieval of a relevant
3D object by specifying a target node within an input 3D
scene [7]. Xu et al. [20] focused on the organization of 3D
scene datasets by clustering 3D scenes using a graph-based
formulation based on a set of detected ‘meaningful’ focal
points in the 3D scene. Ma et al. [15] propose a 3D scene
synthesis method that takes text as input and generates 3D
scenes by retrieving objects from a scene database. This
prior work relies on the presence of consistently categorized
objects and works with synthetic 3D scene data. Also, prior
work does not address our 3D subscene retrieval problem
statement where the query consists of an object of interest
and a set of contextually relevant surrounding objects.
Self-supervised representation learning for images and
3D scenes. Following the success of transformers in nat-
ural language processing, there has been an explosion of
self-supervised image representation models. SwAV [2] in-
troduces multi-crop data augmentation to boost the perfor-
mance of various self-supervised models. He et al. [8] in-
troduce momentum encoder to build a dynamic dictionary
of codes for contrastive learning. DINO [3] re-purposes
the momentum encoder for self-distillation (student-teacher
networks) to update teacher parameters without requiring a
pre-trained teacher. Recent work is aimed at learning rich
representations of 3D point cloud scenes without supervi-
sion. PointContrast [19] introduces a point-level contrastive
loss. Followup work by Hou et al. [9] incorporates spatial
context into the training objective. However, both of these
contrastive methods rely on data pre-processing to regis-
ter the 3D data using known camera poses. In this paper,
we are focused on leveraging a self-supervised encoder for
3D point cloud representations to tackle the 3DSSR task.
To achieve this, we extend Hou et al. [9]’s work so that it
does not require 3D registration. We systematically com-
pare these approaches to our efficient non-contrastive point
cloud encoder (POINTCROP) that is trained through self-
distillation [3] and 3D multi-crop data augmentation.

3. 3D Subscene Retrieval (3DSSR) Task
Figure 1 shows an overview of our 3D subscene retrieval

pipeline. The first input to 3DSSR is a 3D scene T0 repre-
sented as a triangle mesh. Given T0, a user specifies a query
subscene Q which consists of an object of interest q ∈ Q
(e.g., a couch) and a set of context objects (e.g., a side ta-



ble next to the couch and a chair in front of it). The user-
specified objects in Q are defined by a set of axis-aligned
bounding boxes (AABBs) in T0. We have chosen AABBs
over oriented bounding boxes (OBBs) because from a prac-
tical perspective, it is easier to acquire AABBs from a user
than OBBs. The second input is a database of 3D target
scenes {T1, T2, ..., TN}, where each Ti is a triangle mesh
with AABBs localizing the 3D objects in that scene (see
Section 4.1). The output is then a list of 3D subscenes
{S1, S2, ..., SM} (M ≤ N ) extracted from the database
and ranked from most to least similar compared to Q. Con-
cretely, each retrieved subscene Si ⊂ Ti consists of a subset
of the AABBs in Ti. Moreover, each selected AABB in
Si corresponds to exactly one AABB in the query subscene
Q. We do not assume the presence of category labels. In
Section 4.2, we describe our notion of object-object simi-
larity for retrieving similar objects without the presence of
category labels. The desired ranking of retrieved subscenes
orders them from most to least similar by counting the num-
ber of the corresponding objects and the overall correspon-
dence quality score (see Section 4.3).
Object Region Extraction. Self-supervised localization of
objects in 3D scenes is a challenging task. To tackle 3D
subscene retrieval, we first focus on removing the require-
ment for discrete object categories. Therefore, in the main
paper, we assume we have access to the ground truth in-
formation on the localization of 3D objects in 3D scenes.
Furthermore, we discuss results and future work when ob-
ject localization is predicted with supervision. We represent
the localized 3D objects (ground truth or predicted) using
AABBs {b1, b2, ..., bk}. Given each box bi, we sample 3D
points from the object mesh inside bi.
Object Region Similarity. To define similarity at the sub-
scene level, we first establish a notion of object-object sim-
ilarity by encoding the point cloud in each bi. Alternatively,
one could directly use or predict object category labels. In
this paper, we avoid category labels, because we hypothe-
size that their discrete nature poses a problem for the 3D
subscene retrieval task. For instance, two 3D objects with
the same category (e.g., chair) can have dramatically differ-
ent geometries and sizes. In the 3DSSR task, we particu-
larly care about retrieving a collection of 3D objects (i.e.,
3D subscenes) ranked from most to least similar compared
to the query subscene.
3D Subscene Similarity. We then establish a measure
of similarity between a 3D query subscene Q with object
boxes {q1, q2, ..., qn} and a 3D target scene T containing
object boxes {t1, t2, ..., tm}. Each ti is in a potential cor-
respondence with qj . We compute the intrinsic similarity
between them plus any extrinsic similarity important for
the subscene retrieval task at hand. For extrinsic similar-
ity, the geometric overlap of the object boxes when they are
mapped to the world coordinate frame might be desirable.
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Figure 2. Overview of POINTCROP. We sample 3D points from
an input object mesh and take global and local crops of the point
cloud. All crops are fed to the student, while the teacher is given
only global crops. The teacher and student use the same architec-
ture [1] but different optimization strategies. Unlike the student,
the parameters of the teacher are not optimized through gradient
descent. Instead, the teacher’s parameters are an exponential mov-
ing average (EMA) [8] of the student’s parameters. To avoid col-
lapse (i.e., assigning the same representation to all crops) we apply
a centering operation [3] on the teacher network output. Finally,
we apply softmax and compute the cross entropy between the stu-
dent’s output and the teacher’s output.

Another example would be the distance and angle of the
boxes relative to some anchor objects. Note that the former
example using geometric overlap is strict and the latter met-
ric is softer. The exact choice really depends on the down-
stream application. In this setting, we say ti corresponds to
qj if their intrinsic similarity ISim(qj , ti) > τ1 and is the
highest among all objects in T . Furthermore, we require
their extrinsic similarity to satisfy ESim(qj , ti) > τ2. The
thresholds τ1 and τ2 are hyperparameters that can be deter-
mined from validation or training data. Finally, we char-
acterize the goodness of the identified correspondences by
summing over the ISims. More concretely, for the iden-
tified corresponding boxes {(q1, t1), (q2, t2), ...(qN , sN )},
we compute: QT =

∑N
k=1 ISim(qk, tk).

4. Method

4.1. Object Region Extraction

We extract an AABB for each object using the semantic
object instance annotations on the scene mesh in Matter-
port3D [4]. We compute an axis-aligned bounding box bi
of the object mesh. Each bi consists of a center parameter c,
two orientation vectors v1 and v2 (in the global coordinate
frame) and three scalars d1, d2 and d3. The scalars repre-
sent the dimensions of the box bi along v1, v2 and the vector
perpendicular to v1 and v2.

4.2. Object Region Similarity

To compute object-object similarity we first sample 3D
points from the object mesh in each box bi and encode them
using a point cloud encoder. Point cloud encoding is a con-
venient choice that has been shown to work well for down-
stream tasks such as segmentation and detection [9, 17, 19].



Next, we compute the cosine similarity between a pair of
codes. More formally, let f : RN×3 7→ RD be a point
cloud encoder. Suppose q and t are boxes as defined in Sec-
tion 4.1. We denote the point clouds sampled from the 3D
mesh inside q and t by Pq and Pt and the cosine similarity
between the codes as Sim(f(Pq), f(Pt)).

For the point cloud encoder f we explore two choices:
i) POINTCROP: our non-contrastive self-supervised model
that follows self-distillation with no labels; and ii) CSC:
point-level contrastive learning [9]. Both POINTCROP and
CSC divide the input point cloud P into multiple crops.
However, POINTCROP’s objective is to classify each crop
in P to similar class concepts without supervision. On the
other hand, for a given 3D point p ∈ P , CSC finds positive
and negative 3D point correspondences in P . CSC’s ob-
jective pushes the representations of the positive examples
closer to each other and further away from the negatives.
In this paper, we investigate which paradigm leads to bet-
ter shape representations for 3D subscene retrieval and how
they compare to alternative methods.
Self-distillation with no labels. Figure 2 shows an
overview of our point cloud encoder POINTCROP. To pre-
pare the input for POINTCROP, we follow the sampling
strategy of Osada et al. [16] and sample points proportional
to the area of the mesh triangles in each box bi. Next, we
extract global and local crops from each bi using fixed-size
cubes. While a global crop captures most of the 3D ob-
ject point cloud, a local crop covers a smaller portion of
the object. Given the crops, we randomly sample N points
from the point cloud of each global crop and ⌊N/4⌋ points
from each local crop. We feed all crops to a student net-
work and the global crops to a teacher network for self-
distillation. We train the student and teacher so the stu-
dent classifies each crop to similar class concepts as each
global crop fed to the teacher. The similarity here is mea-
sured through a cross-entropy loss. The student and teacher
networks use the same architecture [1]. Specifically, we use
a Point Transformer [21] with the segmentation architecture
followed by a global average-pooling across the 3D points
and DINO’s [3] head module (see supplement for details).
Point-level contrastive learning. The self-supervised
CSC [9] model has been shown to outperform PointCon-
trast [19]. The input to both models consists of pairs of
partial overlapping point clouds. To derive each pair, both
models run a pre-processing step on the RGB-D scans of
a 3D scene with known camera poses. We want to encode
the 3D objects in each box bi so we prepare the input data
differently. More concretely, we prepare each input as a
global crop in POINTCROP. We ensure that pairs of over-
lapping point clouds satisfy the requirements of CSC [9]
(e.g., same percentage of overlapping points). This modi-
fication enables us to use CSC without camera poses and
registration. For the backbone, in addition to the architec-

tures used in CSC [9] (PointNet++ [17] and Sparse Res-
UNet [19]), we also use a Point Transformer [21] (same
architecture as POINTCROP). This enables a direct compar-
ison between POINTCROP and CSC.

4.3. 3D Subscene Similarity and Ranking

Figure 3 summarizes the stages of our subscene re-
trieval strategy. We are given a 3D query subscene Q
containing {q1, q2, q3, q4} and a set of 3D target scenes
{T1, T2, ..., TN}. Let q1 be the object of interest. To re-
trieve subscenes, we first identify the top 100 boxes from
the target scenes that are most similar to q1. Concretely, for
a candidate t1 ∈ T1 we use a pre-trained point cloud en-
coder f from Section 4.2 and compute the cosine similarity
Sim(f(Pq1), f(Pt1)). If t1 ∈ T1 is in the top 100, we ex-
tract a 3D subscene consisting of t1 and (potentially) more
objects in T1 that correspond to the other objects in Q.

To find correspondences between other pairs of objects
in Q and T1 we follow the strategy in Section 3 (un-
der 3D subscene similarity). Extrinsic similarity is com-
puted through the intersection-over-union (IoU) between
the boxes in a candidate pair when both are translated to the
world coordinate frame. More concretely, we translate each
box in Q and T1 so the centroid of the anchor boxes q1 and
t1 are at the origin of the world coordinate frame. Then, for
each ti ∈ T1, i ̸= 1 and qj ∈ Q, j ̸= 1 we accept the can-
didate pair as a potential match if ESim = IoU(qj , ti) > 0.
Intrinsic similarity uses the same pre-trained point cloud en-
coder f and computes the cosine similarity between the en-
coded objects in a candidate pair. At this stage, we accept
the pair as a final match if ISim = Sim(f(Pqj ), f(Pti)) >
τ and is the highest among all remaining boxes in T1. After
repeating this procedure for each remaining qj ∈ Q we find
the subscene S1 ⊂ T1 that best matches the query subscene
Q.

To choose the threshold τ , we first compute the cosine
similarity between all pairs of encoded objects in the train-
ing data. We then apply a k-means clustering algorithm
on the computed similarities using two clusters. Next, we
compute the centroid for each cluster and use the larger
value as the threshold τ . Intuitively, we are clustering
the cosine similarities into two groups ‘similar’ vs ‘non-
similar’, where τ is the average similarity value among
the ‘similar’ cluster. Finally, we rank the retrieved 3D
subscenes based on the number of corresponding objects
they offer (descending order). For two target subscenes
with the same number of corresponding objects, we rank
the one with higher correspondence quality score QT =∑N

k=1 Sim(f(Pqk), f(Ptk)) higher.
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Figure 3. Illustration of finding a subscene S1 ⊂ T1 that best matches a query subscene Q. Before computing extrinsic similarity, the boxes
in Q and T1 are translated such that the centroids of the anchor boxes (q1 and t1) are co-located at the origin (column 3). After computing
the extrinsic similarity (column 4), the corresponding candidate t5 is omitted because it has zero IoU with q4. At this stage both t2 and
t3 have positive IoU with q2 (query chair), but we only take t2 in column 5. This is because the chair candidate t2 has a higher cosine
similarity (intrinsic similarity) with q2 than t3. Both chair and plant candidates t2 and t4 pass the cosine similarity threshold required to be
labeled as a match. The best matching subscene S1 ⊂ T1 consists of t1, t2 and t4.

5. Experiments
5.1. Dataset

We use Matterport3D [4] which contains 2195 3D rooms
with a median number of 20 objects. For evaluation and
category-dependent baselines, we use the ‘mpcat40’ cat-
egory labels. To see a full list of the categories please
see the supplement. In total, we have 17174, 2676, and
4802 objects in the train, val, and test sets respectively. To
evaluate the generalization of the self-supervised models
POINTCROPRANK and CSCRANK, we also train the mod-
els on ScanNet [5] and evaluate them on Matterport3D [4]
(please see results in the supplement).
Validation and Test data. We prepare point cloud data by
first sampling 40960 points from the 3D mesh in each box
bi following Osada et al. [16]. Next, we randomly sample
4096 points from this point cloud and save the results for
evaluation purposes across all experiments.
Training Data. To enable a fair comparison between
POINTCROP and CSC, we prepare the same training data
in two different formats. For each box bi, both models
first sample 40960 points as for the val and test data. For
POINTCROP, we take 2 global and 8 local cubical crops,
where the global and local crops are always 0.7 and 0.4
times the dimensions of bi respectively. We then randomly
sample 4096 points from the point cloud in each global crop
and 1024 points from the local crops. The objective func-
tion in PointCrop compares each global crop to the other 9
crops, resulting in a total of 18 comparisons. For fairness,
we also give 18 pairs of overlapping partial point clouds per
bi to CSC. We use the same overlapping criteria as the orig-
inal paper and each partial point cloud is prepared exactly
like a global crop in POINTCROP.

5.2. Evaluation Metrics

Mean Average Precision. We use mAP to evaluate the
ranked list of retrieved subscenes in the 3DSSR task. We
compare each query subscene against the top 10 target sub-
scenes provided by a given method. To conduct both coarse
and fine differentiation of the point cloud encoders, we in-
troduce two mAP metrics: i) mAPcat considers the object
categories; and ii) mAPgeo measures geometric similarity of
the 3D objects. Furthermore, we denote the precision metric
for the two mAPs as Pcat and Pgeo respectively. To compute
each metric we translate the query and target subscenes so
the centroid of the anchor object boxes are at the origin.
See Figure 4 for an example. For mAPcat we directly use
the oracle categories of the corresponding objects. A match
requires: i) same category; and ii) IoU above a threshold.
We try various thresholds by partitioning the open inter-
val between 0 and 1 into k equal subintervals. Note that
mAPcat only requires that two objects have the same cate-
gory (e.g., chair), and completely ignores geometry. In con-
trast, mAPgeo considers geometric similarity, while keeping
the IoU threshold condition. Specifically, a match requires
Chamfer distance (CD) between the point clouds below a
threshold τc. Assuming the object from the query subscene
has category c, τc is a category-dependent threshold com-
puted for each c. To find τc, we compute the CD for all
pairs of boxes in the test data that have category c. We then
sort the distances from smallest to largest and choose τc to
be the distance at top 5%, top 10%, top 20%, or top 40%.

Note that the second matching criteria for both Pcat and
Pgeo relies on the IoU of each query object and its corre-
sponding candidate in the world coordinate frame. Reject-
ing a candidate based on IoU may be strict for some applica-
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: chair : table

IoU25%( , ) = 65
IoU25%( , ) = 50
IoU25%( , ) = 63

CD20%( , ) = 6
CD20%( , ) = 15
CD20%( , ) = 30

Pcat = 3/3
Pgeo = 2/3

Figure 4. Example illustrating evaluation metrics. For Pcat,
matches are corresponding objects with the same category and
IoU above 25%. This results in a precision of 3/3. For Pgeo the
corresponding tables have a chamfer distance (CD) above the 20%
threshold for the table category. Although the IoU values are above
the 25% threshold, this mismatch results in a Pgeo of 2/3.

tions. To evaluate results using a softer metric, we also con-
sider the distance and angle of the query objects and their
corresponding candidates relative to the anchor objects. See
the supplement for results with the softer matching criteria.
MicroAvg and MacroAvg. A popular approach for eval-
uating self-supervised image representation models is to
first apply the trained model (with frozen weights) on train-
ing and test images and extract feature representations per
image. Then, a linear classifier is trained on the training
features and evaluated on the test features using classifica-
tion accuracy. However, as suggested in DINO [3], train-
ing the linear classifier introduces hyperparameters such
as learning rate, number of training epochs, weight ini-
tialization/normalization strategies, etc. Therefore, we fol-
low DINO [3] and instead use a weighted k-nearest neigh-
bours [18] on the 3D representations derived from a point
cloud encoder. For MICROAVG, we simply compute clas-
sification accuracy on test data across all classes. For
MACROAVG, we first compute the per category classifica-
tion accuracy (on test data) and then average those accura-
cies across all classes.

5.3. Methods

RANDOMRANK: Randomly assigns a box in each target
scene to a box in the query subscene. The ranking strategy
is the same as Section 4.3, except correspondence quality
scores QT m are not computed (no intrinsic similarities).
ORACLECATRANK: This baseline directly compares the
oracle categories for each box in a corresponding candidate
pair and randomly takes a pair with matching categories.
The ranking strategy is the same as RANDOMRANK.
ORACLECATRANK[+IOU]: Same as ORACLECA-
TRANK, except for retrieval we also take into account the
IoU between the boxes in each candidate pair. More con-
cretely, the candidate pair with matching oracle categories
must also have a positive IoU. Note that this is the same
extrinsic similarity criteria for POINTCROPRANK and
CSCRANK as described in Section 4.3.

ORACLEGKRANK: An extension of Fisher et al. [7] graph
kernel-based approach. While the original model only al-
lows for 3D scene retrieval, we introduce modifications to
enable 3D subscene retrieval. For each node qi in the query
subscene graph, we find a list of candidate nodes (from
the target scene graphs) with the same oracle category as
qi. Next, we compute the kernel between each qi and its
corresponding candidate. Here, a kernel is computed by
taking a rooted walk starting from the query node in the
query subscene graph and a target node in the target graph.
We then choose the target candidate with the highest kernel
value. Finally, we rank the resulting target subscenes based
on the number of corresponding objects they offer. If two
subscenes have the same number of corresponding objects,
we rank the subscene with the larger average kernel higher.
Note that this baseline directly uses the oracle categories.
SUPERVISEDTRANSFORMER: Teacher network from
POINTCROP but supervised with focal loss [13].
TRANSFORMERRANKDISC: Predicts category of each
target box in a corresponding candidate pair using SUPER-
VISEDTRANSFORMER. The retrieval and ranking strategy
is the same as Section 4.3, except the intrinsic similarity
condition is replaced with category matching. The result
of this design is a pure discrete subscene retrieval model.
TRANSFORMERRANK: Uses SUPERVISEDTRANS-
FORMER as its point cloud encoder. We use the same
retrieval and ranking strategy as Section 4.3. This
baseline can be thought of as the continuous version of
TRANSFORMERRANKDISC.
CSCRANK: Uses CSC [9] as its point encoder. The re-
trieval and ranking strategy is the same as Section 4.3.
POINTCROPRANK: Our 3D subscene retrieval model us-
ing the POINTCROP teacher as its point cloud encoder, and
the retrieval and ranking strategy described in Section 4.3.
POINTCROPRANKV2, TRANSFORMERRANKV2,
CSCRANKV2 and CATRANKV2[+IOU]: We train
Liu et al.’s Group-Free 3D object detection model on
Matterport3D [4] to localize the 3D objects in test scenes.
POINTCROPRANKV2, TRANSFORMERRANKV2, and
CSCRANKV2 are the result of applying POINTCRO-
PRANK, TRANSFORMERRANK and CSCRANK on the
predicted test boxes. CATRANKV2[+IOU] is the same
as ORACLECATRANK[+IOU], except it utilizes the pre-
dicted box categories instead of the oracle categories.

5.4. Quantitative Evaluation

In this subsection, we compare our subscene retrieval
model POINTCROPRANK against alternatives, in the pres-
ence or absence of ground truth object boxes. Furthermore,
we measure the quality of the point encoders we have used
for the 3DSSR task through object classification. In the sup-
plement, we also evaluate the 3DSSR models on 3D object



Method mAPcat mAPgeo AUC (mAPcat) AUC (mAPgeo)

ORACLECATRANK 19.69 7.99 9.97 4.27
ORACLECATRANK[+IOU] 27.73 9.16 13.12 5.08
ORACLEGKRANK 17.22 5.69 8.70 2.76
TRANSFORMERRANK 16.61 20.88 8.87 10.86
TRANSFORMERRANKDISC 16.51 6.20 7.54 2.86

RANDOMRANK 0.68 1.45 0.36 0.64
CSCRANK 12.65 16.10 6.98 8.36
POINTCROPRANK 14.94 25.21 8.06 13.14

Table 1. Mean average precision and area under the curve (AUC)
computed on 50 test queries. All models that use oracle cate-
gories are in the top group. For mAPcat and mAPgeo our model
(POINTCROPRANK) outperforms other models that have no ac-
cess to oracle categories (bottom group). Furthermore, using
mAPgeo our model even outperforms the models that directly use
oracle categories (e.g., ORACLECATRANK[+IOU]) or are trained
with category labels (i.e., TRANSFORMERRANK). Columns four
and five show the AUC for each mAP metric at various IoU thresh-
olds. For mAPgeo, POINTCROPRANK significantly outperforms
all models. Moreover, when evaluating based on AUC of mAPcat,
we achieve the best performance among all models that have no
access to oracle categories.

retrieval. Moreover, we add a rotation module to the 3DSSR
models (so they can take into account rotated subscenes)
and evaluate them.
3D Subscene Retrieval. We measure the quality of our
model (POINTCROP) against alternatives for the 3DSSR
task. We created 50 validation and 50 test query subscenes,
isolated from the training data. Each query subscene in the
val or test sets is compared against the remaining scenes in
the val or test set. Table 1 shows mAPcat and mAPgeo on
50 test queries with IoU and Chamfer distance thresholds
of 25% and 20% respectively. In the supplement, we share
mAP plots for various IoU and Chamfer distance thresh-
olds. To create IoU thresholds, we partition the line from
0.05 and 0.95 into 10 equally spaced values. For Cham-
fer distance, we consider thresholds of 5%, 10%, 20% and
40%. Given the range of IoU thresholds and a Chamfer dis-
tance threshold of 20%, we show the area under the curve
(AUC) for each subscene retrieval model in Table 1.

Recall that TRANSFORMERRANK, CSCRANK and
POINTCROPRANK all use the same retrieval and rank-
ing strategy from Section 4.3. Moreover, the point cloud
encoder used for these subscene retrieval models has the
same architecture. The only difference between these re-
trieval models is the training strategy for their encoder. No-
tably, the encoder for TRANSFORMERRANK (i.e., SUPER-
VISEDTRANSFORMER) is trained with category labels as
opposed to the self-supervised encoders for CSCRANK and
our POINTCROPRANK. This setup results in an apples-
to-apples comparison between the training objectives of
these encoders for the 3D subscene retrieval task. For
mAPcat, the AUC metric in Table 1 (column 4) indicates that
our model (POINTCROPRANK) achieves better results than

Method mAPcat&geo AUC (mAPcat&geo)

ORACLECATRANK[+IOU] 9.16 5.08
TRANSFORMERRANK 9.80 5.49
CSCRANK 7.91 4.45
POINTCROPRANK 9.91 5.49

CATRANKV2[+IOU] 2.54 1.42
TRANSFORMERRANKV2 6.71 3.64
CSCRANKV2 4.46 2.42
POINTCROPRANKV2 5.87 3.40

Table 2. Comparing 3DSSR models when applied on ground truth
versus predicted boxes. The top group shows models that retrieve
subscene using the oracle test boxes. The bottom group shows
results for the same models when applied to predicted test boxes.
The performance gap between the two groups indicates that the
SOTA 3D object detection models can not help solve 3DSSR in
the absence of ground truth object localization.

the self-supervised alternative CSCRANK (15.5%). How-
ever, when computing AUC for mAPgeo, we observe that
POINTCROPRANK significantly outperforms all models in-
cluding TRANSFORMERRANK (21.0%). Note that mAPgeo
is an evaluation metric that measures the geometric similar-
ity of the retrieved corresponding objects.

Finally, the superiority of POINTCROPRANK and
TRANSFORMERRANK over TRANSFORMERRANKDISC
(based on AUC in Table 1) validates our hypothesis that
matching on discrete categories is not ideal for retrieving
similar 3D subscenes. Instead, a continuous representation
can achieve better results.
3D Subscene Retrieval with Predicted Boxes. The models
in the top group of Table 2 use the ground truth object local-
ization at test time. However, in the bottom group, we apply
the same models to the predicted test data boxes. To local-
ize the objects we use the Group-Free [14] 3D object detec-
tion model trained on Matterport3D’s [4] training scenes.
For the evaluation metric, we take an and condition between
Pcat and Pgeo and compute mAPcat&geo and its corresponding
AUC. Our motivation behind combining Pcat and Pgeo is to
ensure the predicted boxes are semantically meaningful and
geometrically similar to the query objects. For all results
here we use the same IoU and Chamfer distance thresholds
as in Table 1. To compute Pcat for a predicted box bi we
need a ground truth category. To obtain this, we take the
category of all ground truth boxes that have an IoU of at
least 0.25 with bi.

The results in Table 2 demonstrate a performance gap
between models that use oracle versus predicted test data
boxes for 3DSSR. This indicates that solving 3DSSR in
the most general case (i.e., with object localization) is very
challenging and the SOTA 3D object detection model can
not address that.
Object Classification. To measure the quality of the point



Model MICROAVG MACROAVG

SUPERVISEDTRANSFORMER 58.43 38.34

CSC SparseResUNet 38.90 18.97
CSC PointNet++ - -
CSC Transformer 51.94 32.66
PointCrop 48.21 26.75

Table 3. Object classification on test set using 20-nearest neigh-
bours [18]. We compare POINTCROP against SUPERVISED-
TRANSFORMER and CSC [9] using different backbone architec-
tures. Our model (POINTCROP) achieves competitive accuracy.

cloud encoders used in 3DSSR, we evaluate them on a clas-
sification task. In Table 3 we compare the performance
of POINTCROP against CSC and SUPERVISEDTRANS-
FORMER. The results suggest that POINTCROP achieves
competitive classification accuracies compared to alterna-
tives. An important observation is that although SUPER-
VISEDTRANSFORMER has the highest accuracy, this does
not translate to the best performance in subscene retrieval
(i.e., the TRANSFORMERRANK model). In other words, a
point cloud encoder with higher classification accuracy does
not necessarily retrieve the most geometrically similar sub-
scenes.

5.5. Qualitative Evaluation

Figure 5 shows two sets of test queries comparing our
model POINTCROPRANK against TRANSFORMERRANK
and CSCRANK. Each scene is displayed as two top-down
images showing the entire scene (top left) and the zoomed-
in view of the subscene. In the first example, we com-
pare our model POINTCROPRANK against the supervised
TRANSFORMERRANK. Here, we observe that POINTCRO-
PRANK retrieves a subscene at rank 2 and 3 that are the most
similar in geometry and object arrangement to the query
subscene. Note that for TRANSFORMERRANK the retrieved
tables at all ranks are larger in size (supporting 8 chairs as
opposed to 4) compared to the query table.

In the second example, we compare POINTCROPRANK
against another self-supervised model, CSCRANK. Our
model retrieves a chair at ranks 2 and 3 and cushion at rank
2. Here the retrieved subscene that is the most similar to the
query subscene is from ours at rank 2. Note the geometric
similarity between the chairs at rank 2 (in purple). How-
ever, we observe that CSCRANK does not find any matches
at ranks 1, 2 or 3. Please see the supplemental material for
more qualitative examples.

6. Conclusion
Our work is subject to a number of limitations. Our re-

sults either assume object detections are given, or rely on
an external detection approach. Incorporating 3D object de-

Query Method Rank 1 Rank 2 Rank 3

(chair*,
table,
chair)

POINTCROPRANK

TRANSFORMERRANK

(chair*,
cushion,
lamp)

POINTCROPRANK

CSCRANK

Figure 5. Qualitative results for two test set queries. Each row
compares the ranked list of retrieved 3D subscenes for the query
subscene shown on the left. Each scene is displayed as a pair of
top-down images with the top-left showing the entire scene, and
the bottom left showing a zoomed-in view of the subscene. The
query and target objects (i.e., anchor objects) are in purple, while
other context objects in each subscene are colored according to
their category. We note that our POINTCROPRANK approach re-
trieves subscenes from the 3D scene dataset that are more similar
in geometry and object arrangement to the query subscene com-
pared to supervised (TRANSFORMERRANK) or self-supervised
(CSCRANK) approaches.

tection into the subscene retrieval pipeline is an interesting
direction for future work. Also, our retrieval and ranking
strategy is based only on point cloud information and does
not account for fine-grained color or texture appearance of
the objects in each scene.

We presented the 3D subscene retrieval task, general-
izing prior work on context-based 3D object retrieval and
3D scene retrieval. We believe that 3D subscene retrieval
is a useful task that will find increasing use as 3D scene
datasets continue to grow. Our key finding in building
3DSSR is that using a good continuous 3D shape repre-
sentation leads to geometrically more similar retrieval re-
sults compared to using discrete object categories. In this
paper, we presented POINTCROP, our non-contrastive self-
supervised encoder and used it for 3D subscene retrieval.
Our experiments show that POINTCROPRANK outperforms
supervised approaches (trained using category labels) and
prior self-supervised training frameworks on the 3D sub-
scene retrieval task.
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